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Abstract. Smart grids are networks that distribute electricity by re-
lying on advanced communication technologies, sensor measurements,
and predictive methods, to quickly adapt the network behavior to differ-
ent possible scenarios. In this context, the adoption of machine learning
approaches to forecast the customer energy consumption is essential to
optimize network planning operations, avoid unnecessary energy pro-
duction, and minimize power shortages. However, classical forecasting
methods are not able to take into account spatial and temporal auto-
correlation phenomena, naturally introduced by the spatial proximity of
consumers, and by the seasonality of the energy consumption trends.
In this paper, we investigate the adoption of several solutions to take
into account spatio-temporal autocorrelation phenomena. Specifically,
we investigate the contribution provided by the explicit representation of
temporal information related to historical measurements using multiple
strategies, as well as that of simultaneously predicting multiple future
consumption measurements in a multi-step predictive setting. Finally,
we investigate the effectiveness of injecting descriptive features to make
the learning methods aware of the spatial closeness among the consumers.
The experimental evaluation performed on a real-world electrical network
demonstrated the positive contribution of making the models aware of
spatio-temporal autocorrelation phenomena, and proved the overall su-
periority of models based on the multi-step predictive setting.

Keywords: Energy forecasting · Multi-step prediction · Spatio-temporal
autocorrelation

1 Introduction

The infrastructures for the energy distribution are continuously subject to evo-
lutions, mainly because of the generally increasing energy demand, as well as
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of the introduction of new technologies, such as renewable power plants and
car charging stations. The need of managing complex scenarios led to the def-
inition of the so-called smart grids, that are distribution networks that exploit
sensor measurements, advanced communication technologies and predictive com-
ponents, to quickly adapt the network behavior to multiple possible situations.
In this context, the accurate forecasting of the customer energy consumption is
fundamental, not only to optimize the planning of network maintenance opera-
tions over the long term, but also to properly tune the production of energy from
fossil fuel power stations. Indeed, producing energy from fossil sources generally
leads to high CO2 emissions, and the overproduction may also lead to the need
of additional resources for storage. On the other hand, the underestimation of
the energy consumption may compromise the system reliability, since an exces-
sive demand could easily degenerate into a blackout. For these reasons, it is of
paramount importance to predict the energy consumption in the network.

Machine learning methods can fruitfully be adopted to support this task,
since they are able to exploit historical data, temporal trends and other consumer
characteristics to build accurate predictive models. In general, the temporal di-
mension plays a central role for this task. Indeed, we can expect to observe
cyclical behaviors, for example, along the months of each year (i.e., a generally
higher consumption during summer and winter, mainly due to heating/cooling
systems, rather than during spring and autumn).

The temporal dimension can generally introduce autocorrelation phenomena,
known as the correlation of a signal with a delayed copy of itself as a function
of delay, or the similarity between observations as a function of the time lag
between them [4]. Analogously, the spatial closeness can influence the measure-
ments: the Tobler’s first law of geography [17] states that “everything is related
to everything else, but near things are more related than distant things”. In this
specific context, spatially close consumers may exhibit a similar behavior, mainly
because they live in similar climatic conditions. Although considering temporal
and spatial autocorrelation phenomena should generally lead to a higher accu-
racy of the learned models [15], they have not yet been fully exploited in the
context of the prediction of the energy consumption. Indeed, in the literature
we can find only few works that investigated their contribution for the forecast-
ing of the energy consumption, which are based on classical ARIMA models [6,
12]. On the other hand, their positive effect on the accuracy of the learned pre-
dictive models has been observed in the context of the energy production from
photovoltaic power plants [5]. However, the challenges arising while aiming to
predict the energy production and the energy consumption are different: while
the former task is much more dependent on physical factors, such as weather
conditions, in the latter, the prediction is mainly dependent on the behavior of
consumers. Therefore, it is expected that the temporal dimension is more influ-
ential on the prediction of the energy consumption than for the prediction of the
energy production.

In this paper, we propose a method for the forecasting of the monthly energy
consumption of the consumers of a smart grid on a yearly horizon. The proposed
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approach is able to properly capture and model both temporal and spatial auto-
correlation phenomena. Different strategies are proposed for both the temporal
and the spatial dimensions, each of which is able to properly model specific tem-
poral/spatial characteristics and relationships among different measurements.
Finally, we investigate the possibility to predict the 12 monthly measurements
of the considered yearly horizon simultaneously, in a multi-step predictive set-
ting, that, as we will emphasize in Sec. 2, is able to implicitly model the temporal
relationships among the measurements at different time points, for both descrip-
tive and target variables.

The rest of the paper is organized as follows. In Sec. 2, we briefly discuss
existing related work. In Sec. 3, we describe the proposed approach for the
forecasting of the energy consumption in smart grids, taking into account both
temporal and spatial autocorrelation phenomena. In Sec. 4 we describe our ex-
periments on a real-world energy distribution network. Finally, in Sec. 5, we
draw some conclusions and outline possible future work.

2 Related Work

In the literature, we can find several works that propose methods for the predic-
tion of the energy consumption, at different spatial and temporal scales: from
high and very localized geographical resolutions (e.g., hourly measurements of a
single sensor) to coarser temporal resolutions (e.g., days, months, years) and/or
covering a large geographic area (e.g., a region or a country). Existing approaches
can also be categorized as single-step methods, that aim to predict the value of
a target attribute for a single future time step, and multi-step methods, that
aim to predict the value of a target attribute for multiple steps ahead. In [16],
the authors described different strategies that can be adopted to solve the latter
task, including recursive, direct and Multi-Input Multi-Output (MIMO) strate-
gies. The recursive strategy exploits an approach based on self learning, that
iterates a single-step ahead predictive model to obtain the desired forecasts: af-
ter estimating the next value of the sequence, it is fed back as a descriptive
variable for the subsequent prediction. The direct strategy is based on learning
a set of independent predictive models, where the i-th model is able to return a
prediction for the i-th time points in the future. Note that both recursive and
direct strategies are actually single-step approaches that are applied multiple
times to obtain a multi-step ahead prediction. On the other hand, the MIMO
strategy aims to learn one global model that returns a vector of predictions,
also possibly taking into account the existence of dependencies between future
values, that in principle may be beneficial in terms of forecasting accuracy [3].

In [2], the authors proposed a deep learning architecture to forecast the cus-
tomer energy consumption for the next month, using the measurements of the
previous 12 months and other information such as the target month and the
category of the customer (e.g., residential, business, etc.). Among the considered
deep learning models, LSTM achieved the lowest mean absolute error.
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In [18] the authors compared the performance of different methods, such
as Linear Regression, Regression Trees and Multivariate Adaptive Regression
Spline (MARS), for the prediction of the next month energy consumption us-
ing climate data and the characteristics of the buildings (e.g., size of living area,
number of rooms, etc.). The authors also aggregated the individual consumptions
to predict the monthly consumption for groups of buildings. Results showed that
MARS was the best model for individual households, while regression trees out-
performed the competitors for the prediction of the consumption of the groups.

In [10], the authors adopted the direct strategy to predict the electric load
10 days ahead using ARIMA and LSTM. The models were evaluated on three
electrical networks and the results showed a general superiority of LSTM.

Despite several studies have been proposed for energy consumption forecast-
ing, only a few of them investigated the possible contribution coming from spatial
and temporal autocorrelation phenomena. An attempt in this direction has been
done in [6, 12], where the authors considered spatial autocorrelation phenomena
for the forecasting of the regional electricity consumption. In these works, a spa-
tial ARMAmodel (SAR-ARMA) and a spatial ARIMAmodel (ARIMA-Sp) were
proposed. However, auto-regressive approaches usually train a model based on
the target variable only, and are not able to take into account additional features
and possible dependencies between them and the target variable.

In [9], the authors proposed a deep neural network, called LSTNet, which
combines convolutional neural networks to capture short-term patterns and
LSTM or GRU for long-term patterns. To overcome the issue caused by the
vanishing gradient, which affects the possibility to properly capture long-term
interdependencies, the authors proposed the introduction of a recurrent-skip
layer or an attention mechanism. Similarly, in [14], the authors proposed TPA-
LSTM, an attention-recurrent neural network that allows the model to learn
interdependencies among multiple variables across all previous time-steps.

The consideration of the spatial and of the temporal dimensions gained a gen-
eral interest for other tasks related to time-series forecasting, even if not specifi-
cally focused on the prediction of the energy consumption. In particular, neural
network architectures that simultaneously consider both temporal and spatial
dimensions have been recently proposed. A relevant example is Graph WaveNet
[19], a spatio-temporal graph convolutional network for multi-step forecasting,
tailored for the prediction of traffic conditions at different locations. It uses di-
lated convolution networks to capture temporal dependencies and a self-adaptive
adjacency matrix to capture spatial correlations. Another relevant example ap-
plied in the same domain is GMAN [20], which exploits a graph multi-attention
network, with spatial and temporal attention mechanisms. Since it can be con-
sidered as one of the most recent approaches for multi-step prediction, that also
consider spatio-temporal aspects, it will be considered as a state-of-the-art com-
petitor in our experimental evaluation (see Sec. 4).
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3 The proposed method

In this section, we describe our approach to forecast the monthly energy con-
sumption of consumers on a yearly horizon. Therefore, the goal is to predict,
for each consumer, 12 energy consumption values, i.e., one for each month of
the subsequent year. As mentioned in Sec. 1, predicting such values is useful
for planning network maintenance operations, as well as for tuning the energy
production from fossil sources.

In the following subsections, we report the details of the proposed strategies
to take into account the temporal and the spatial autocorrelation phenomena.
After properly representing the temporal and the spatial dimensions, different
standard regression models can be learned on top. At the end of the following
subsection, we also briefly introduce the considered regressors and their extension
to the multi-step predictive setting proposed in this paper.

3.1 Modeling the temporal autocorrelation

We propose different strategies to take into account the temporal autocorrela-
tion, exploiting historical data about consumptions. We investigate two forecast-
ing settings, namely, single-step (SS), where the 12 predictions are obtained by
a recursive approach, and multi-step (MS), falling in the MIMO category, which
goal is that of learning a global predictive model that returns the whole vector
of 12 predictions. More formally, considering a time series of length w of energy
consumptions for the consumer c, the SS setting consists in the exploitation of
the historical measurements up to the time-step t-1 to predict the next time-step
yc,t. Through the recursive strategy, the predicted value yc,t is considered as a
real measurement for the forecast of the energy consumption yc,t+1, and so on
up to predict yc,t+11 (see the left part of Fig. 1).

Note that the adopted recursive strategy exhibits both advantages and dis-
advantages with respect to the direct strategy. Among the strong points, we can
mention that the number of training instances increases (roughly by a factor of
w), thanks to the fact that the measurement at a given month is considered mul-
tiple times, in different positions of the w-dimensional training time series (see,
for example, the measurement related to Dec 2018 in the left part of Fig. 1). On
the other hand, this aspect introduces the disadvantage of losing the temporal
semantics of each descriptive feature, namely, each feature does not represent the
same month of the year for all the training instances. This means that the model
learned in this setting cannot easily detect and exploit seasonality phenomena.
Another disadvantage is that, since it relies on a self-training approach, forecast-
ing errors at the initial time-steps may be propagated to subsequent time-steps
[13]. In order to alleviate the first issue, keeping the advantages of the recursive
strategy, we explicitly represent the temporal information through additional
features. In this respect, we propose two alternative settings:

– SS-DT (Described Target time-step), that introduces two additional de-
scriptive features, namely the year jt and the month mt of the target value
to predict yc,t;
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Fig. 1. A graphical representation of the single-step (SS) and multi-step (MS) learning
settings. In the SS setting, the prediction for the i-th step is added to the descriptive
variables for the prediction of the (i + 1)-th step, while in the MS setting a global
method able to simultaneously predict the value for all the 12 steps is learned.

– SS-DTP (Described Target and Previous time-steps), that introduces the
year jt and the month mt of the target value to predict yc,t, as well as
the years jt−1, jt−2, . . . , jt−w and the months mt−1,mt−2, . . . ,mt−w of the
considered w previous observations.

It is noteworthy that, although SS-DT and SS-DTP explicitly represent the in-
formation about the year and the month associated with a given descriptive
feature, the absolute value of a month does not properly represent the temporal
cyclicity. In other words, December (12) 2018 may appear very distant to Jan-
uary (1) 2019, while it is actually temporarily close. To alleviate this issue, we
resort to directional statistics that allow considering the temporal position of the
target month, as well as that of the months historical data refer to (only in the
case of SS-DTP). At this purpose, we use directional statistics that envelope the
probability density function around the circumference of a unit circle represent-
ing the months of the year (see Fig. 2). More specifically, we compute the radial
closeness between two months m1 and m2, represented as integer values in the
interval [1; 12], on the unit circumference as 2π − dr(m1,m2), where:

dr(m1,m2) = min

(
2π

12
· |m1 −m2|, 2π − 2π

12
· |m1 −m2|

)
(1)

is the radial distance between m1 and m2 on the acute angle (see Fig. 2 for an
example of radial distance computed between February and May).
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Fig. 2. Representation of the month of the year on the circumference of a unit circle. In
the example, the radial distance between February and May is computed as d(2, 5) =
min(2π/12 · |2− 5|, 2π − 2π/12 · |2− 5|) = min(1.57, 4.71) = 1.57.

In our case, we compute the radial closeness between a given month in the
descriptive attributes and the month of the target time-step to predict. Hence-
forth, the settings that exploit this radial closeness will be distinguished through
a C (cyclical), appended to the name of the setting.

As regards the MS setting, we adopt the MIMO strategy to forecast 12 time-
steps yc,t, . . . , yc,t+11 for the consumer c at the same time. In this setting, we
consider as input features the monthly energy consumption of the previous year
(i.e., of the previous w = 12 months) and the year of the target time-step (see
the right part of Fig. 1). Unlike the SS setting, MS does not need additional fea-
tures to represent temporal relationships. Indeed, it is implicitly able to capture
potential temporal dependencies, since the i-th feature always represents the i-
th month of the year. On the other hand, while the recursive SS setting may be
more suited when the training data is limited, MS preserves the dependencies
also between the predicted values, and avoids the propagation of errors typical
of the recursive SS strategy.

Note that, however, not all the regression methods can be easily extended to
work in this setting. In our system, we adopt three different regressors, namely,
Linear Regression, Regression Trees and Random Forests, also because of their
ability to produce accurate models also when the available training data is poor.

Linear Regression methods aim to identify a linear model with coefficients
q = (q1, q2 . . . , qp), where p corresponds to the number of descriptive features
plus 1 (the intercept), that minimizes the residual sum of squares between the
observed target values in the training set, and the predictions provided by the
linear approximation. For multi-step prediction, in our case, since we need to
predict the consumption for the 12 subsequent months, identifying a predictive
linear model corresponds to finding a matrix of coefficients Q ∈ Rp×12 such that
1
N

∑N
i=1 ||u⊤

i Q−v⊤i ||22 is minimized, where ui ∈ Rp is the vector of the descriptive
features of the i-th training instance concatenated with a 1 (to take into account
the intercept), N is the number of training instances, and vi ∈ R12 is the vector
of target values for the 12 subsequent months for the training instance ui.

Learning methods for the construction of Regression Trees and ensemble
thereof (e.g., Random Forests) are usually based on top-down induction pro-
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cedures. Starting from the root node containing all the training instances, at
each iteration, the best split, consisting of a descriptive feature and a threshold,
is identified such that it well discriminates/separates the instances falling in the
resulting children nodes. Leaf nodes of the tree store the actual predictions. The
identification of the best split relies on some heuristics that, for regression tasks,
are usually based on the reduction of the variance.

The extension of these approaches to solve multi-step tasks consists in storing
multiple output values in the leaf nodes (12 in our case), and in a modified
heuristics able to globally consider the contribution of the split towards the
proper prediction of all the target values. Specifically, we adopt the arithmetic
mean of the variance reduction computed over all the target time-steps.

3.2 Modeling the spatial autocorrelation

As mentioned in Sec. 1, taking into account the spatial autocorrelation in the con-
struction of the predictive models may be beneficial in terms of accuracy, since
spatially close consumers could exhibit a similar behavior, mainly due to simi-
lar climatic conditions. We evaluate the contribution coming from the adoption
of two different spatial statistics [5]: the Local Indicator of Spatial Association
(LISA) [1] and the Principal Coordinates of Neighbor Matrices (PCNM) [7].

According to [1], i) a LISA for a given observation must give an indication
of the extent of significant spatial clustering of similar values around that obser-
vation, and ii) the sum of LISAs for all observations must be proportional to a
global indicator of spatial association. In our case, given the set of n consumers,
we first compute a neighborhood matrix A ∈ {0, 1}n×n as:

A[ca, cb] =

{
1 if dist(ca, cb) < maxDist

0 otherwise
(2)

where ca and cb are the a-th and the b-th consumers (with 1 ≤ a ≤ n and
1 ≤ b ≤ n), dist(ca, cb) is the geodesic distance between consumers, andmaxDist
is a user-defined threshold on the maximum distance to consider the spatial
autocorrelation phenomena among consumers as relevant. The matrix A is then
normalized so that the sum of each row equals to 11, as follows:

A′[ca, cb] =
1

max(
∑n

i=1 A[ca, ci], 1)
A[ca, cb] (3)

Using the matrix A′, we can estimate the contribution of the neighborhood on
each descriptive feature. Specifically, we first compute the z-score normalization
for each descriptive feature x of each consumer ca as:

x′
ca =

xca − µx,ca

σx,ca

, (4)

1 Some rows in the normalized matrix can have a sum of 0, when the corresponding
consumer has no other consumers falling in its neighborhood, according to maxDist.
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where µx,ca and σx,ca are the average and the standard deviation of the descrip-
tive variable x for the consumer ca. Using the normalized value x′

ca , we compute
the spatial indicator Ix,ca for the variable x of the consumer ca as:

Ix,ca = x′
ca ·

n∑
i=1

(A′[ca, ci] · x′
ci) (5)

The computed spatial indicators, one for each feature, can finally be added as
additional descriptive features. Therefore, this solution leads to the introduction
of w additional features, that represent the initial descriptive features influenced
by the spatial closeness with other consumers.

A different approach to consider the spatial autocorrelation, as mentioned
before, is represented by the PCNM. It allows us to extract additional, separate,
spatial descriptive attributes, starting from the closeness among consumers. Its
computation consists of the following main steps:

1. Compute a truncated squared distance matrix, as follows:

D∗ =

{
dist(ca, cb)

2 if dist(ca, cb) ≤ maxDist

4 ·maxDist otherwise
(6)

where maxDist is a user-defined threshold.

2. Perform the Principal Coordinate Analysis (PCoA) [8] on D∗. This analysis
consists in the diagonalization of ∆, where:

∆ = −1

2

(
I − 1 · 1⊤

n

)
D∗

(
I − 1 · 1⊤

n

)
(7)

with I be the identity matrix, and 1 be a vector of 1s. After diagonalization,
the principal coordinates are obtained by scaling each eigenvector of ∆ by the
square root of its correspondent eigenvalue. Note that the eigenvalues can be
either positive or negative. Eigenvectors associated with high positive (resp.,
negative) eigenvalues represent a high positive (resp., negative) autocorrelation.
Since we are interested in considering only positive spatial autocorrelation phe-
nomena (i.e., spatially close consumers with similar behaviors, rather than spa-
tially distant consumers with similar behaviors), only eigenvectors corresponding
to positive eigenvalues are kept and used as spatial descriptors.

Henceforth, the settings that exploit the spatial dimension will be distin-
guished through LISA or PCNM, appended to their name. In Fig. 3, a graphi-
cal overview of all the proposed learning setting is provided, where the temporal,
the spatial or both temporal and spatial dimensions are considered.

4 Experiments

In this section, we describe the considered real-world dataset and the experi-
mental setting. Then, we show and discuss the obtained results.



10 D’Aversa et al.

Fig. 3. A graphical overview of all the proposed learning setting is provided, where the
temporal, the spatial or both temporal and spatial dimensions are considered.

4.1 Experimental Setting

We considered a dataset of an electrical network of a small city in the South
of Italy consisting of 159 customers. Each customer is associated with the geo-
graphic coordinates (latitude and longitude) of the energy substation he/she is
connected to in the network. The dataset consists of energy consumption data
(in kWh) collected every month for a period of 10 years, i.e., from 2010 to 2019.
Following a cross-validation setting for time-series, we iteratively consider each
year from 2012 to 2019 as target year (see the quantitative information of the
dataset in Tab. 1), with the goal of predicting the energy consumption for all
the months of the target year, for all the customers of the network.

We performed the experiments with all the settings proposed in Fig. 3, to
properly assess the contribution coming from the specific strategy adopted to
take into account temporal and/or spatial autocorrelation phenomena. For LISA,
we computed 12 indexes, one for each descriptive variable representing previous
consumptions. For PCNM, we extracted 15 eigenvectors, following the experi-
mental results reported in [5]. For both, the threshold maxDist was set to 0.3
km, which is adequate in the context of a small city. As regressors, as introduced
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Training Testing SS Training MS Training
Fold period period instances instances
1 2010-2011 2012 1,908 159
2 2010-2012 2013 3,816 318
3 2010-2013 2014 5,724 477
4 2010-2014 2015 7,632 636
5 2010-2015 2016 9,540 795
6 2010-2016 2017 11,448 954
7 2010-2017 2018 13,356 1,113
8 2010-2018 2019 15,264 1,272

Table 1. Quantitative information of each fold of the considered dataset.

in Sec. 3.1, we considered Linear Regression (LR), Regression Trees (RT) and
Random Forests (RF), available in scikit-learn. All the regressors were run with
the default values for their parameters, except for the regression trees, for which
we performed a grid search for the pruning parameter ccp alpha ∈ {0.2, 0.5, 1.0}.
In Sec. 4.2, we report the best obtained results (i.e., with ccp alpha = 1.0).

As state-of-the-art competitor, we considered GMAN [20], a recently pro-
posed neural network that is able to capture both spatial and temporal dimen-
sions, through attention mechanisms, and of performing multi-step predictions.
We adapted GMAN so that the temporal embedding encodes the month of each
time-step, instead of the day and the hour, as in its original implementation. We
also optimized its user-defined threshold ϵ on the spatial closeness, considering
ϵ = 0.1 (as suggested in [20]) and ϵ = 0.05. In Sec. 4.2, we report only the best
obtained results (i.e., with ϵ = 0.05). Note that GMAN also performs a tuning
phase on a validation set. Therefore, for this method, the results on the first fold
are not available, since it requires data of an additional year as validation set.

As evaluation measure, we adopted the Relative Squared Error (RSE), which,
contrary to other common measures like the RMSE, allows us to evaluate the
predictive accuracy with respect to a simple predictor based on the average: a
RSE close to 0.0 (resp. 1.0) means that the model has a perfect predictive ac-
curacy (resp., equivalent to that of the simple average predictor), while a RSE
over 1.0 means that the model is worse than the simple predictor. Formally,

RSE=
∑

t (r
t−r̃t)2∑

t(r
t−r)2 , where rt and r̃t are the true and the predicted values, respec-

tively, for the t-th time-step, and r is the average value in the dataset.

4.2 Results and Discussion

In Tab. 2, we show the RSE result for each testing fold (target year), obtained
by the considered regressors in the proposed settings, and by the competitor
GMAN. We recall that the results of the first fold (2012) for GMAN are not
available because it requires an additional year of data for its validation phase.
Moreover, we do not report the results obtained in some settings of the LR (i.e.,
SS-DTP NoSpat, LISA and PCNM), since it was not able to fit a proper model
(i.e., RSE>10) with the small amount of available training data for the first fold.

Looking at Tab. 2, we can make several observations. First, for the years 2012
and 2013, the RSE values appear quite high. This is due to the scarce availability
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of training data for these folds (see Tab. 1). An exception is represented by the
results obtained by MS, especially in the settings MS+PCNM and MS+LISA,
that achieved good results also for these years. This may be due to the fact that
the poor availability of historical data has been compensated by the captured
dependencies among different time-steps and by the exploitation of the spatial
information. Note that MS+PCNM appeared to be the setting that provided
the best results overall for most of the years. Focusing on the regressors, the
adoption of RF generally provided the best results in most of the settings, and
when learned from the MS+PCNM setting, it led to the best absolute results.
Note that, as emphasized in Sec. 3.1, learning methods for the induction of
multi-step RTs and RF simultaneously optimize the construction of the model
by considering all the time-steps. The capability of RF to reduce the variance in
the predictions with respect to RT provided further improvements.

Looking at the results obtained by the considered state-of-the-art competitor
GMAN, we can notice that, besides not being able to make predictions for the
year 2012, the obtained RSE for the 2013 is very high, and quite close to the
average baseline for the 2014. The RSE values become more acceptable for the
subsequent years, but still higher than those achieved by the approaches pro-
posed in this paper. These results prove that the approaches proposed in this
paper to capture temporal and spatial autocorrelation phenomena are very ef-
fective with respect to those adopted by GMAN, and confirm the limitation of
deep neural network architectures when the available training data is poor.

Overall, the strongest contribution appears to come from the MS setting.
This observation is also clear from the average results shown in Fig. 4, where we
can easily observe that the charts related to MS generally appear the lowest ones
(i.e., with the lowest RSE), independently on the regressor. This confirms that
the temporal dimension (and, especially, temporal autocorrelation phenomena)
is fundamental for the prediction of the energy consumption in smart grids,
and that capturing dependencies between different target time-steps provides
higher advantages than explicitly representing the temporal information in the
descriptive attributes, as done in the ST-DTP setting, and than adopting the
radial temporal closeness (C). We further stress this aspect by observing the
line charts in Fig. 5, where we plot the average RSE per month obtained by
the best configurations according to Fig. 4 for each pair of setting (MS, SS-
DT, SS-DTP) and regressor. From Fig. 5, we can observe that GMAN generally
achieved an average high RSE, and that the MS setting led to more stable errors
over the months of the year. This is due to its capability of capturing possible
dependencies among the months of the year, and to avoid the propagation of
errors introduced by recursive approaches. An interesting case is observable in
the period April-May, where the highest prediction errors are made by almost all
the approaches, probably due to the abrupt climatic changes that often happen
in the South of Italy during such a period. On the other hand, the settings based
on MS are able to provide accurate predictions also in these cases.
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Table 2. Results in terms of RSE for each testing fold. The best result for each regressor
(sub-table) and fold (column) is emphasized in bold, while the best result overall for
each fold (column) is emphasized in bold with a gray background.

2012 2013 2014 2015 2016 2017 2018 2019

GMAN - 9.640 0.840 0.650 0.370 0.280 0.270 0.359

L
in
e
a
r
R
e
g
re

ss
io
n

SS-DT

NoSpat 0.364 0.719 0.263 0.302 0.219 0.245 0.130 0.242
LISA 0.366 0.726 0.264 0.305 0.221 0.251 0.133 0.243

PCNM 0.392 0.757 0.279 0.301 0.225 0.247 0.131 0.252
C 0.363 0.715 0.266 0.298 0.219 0.241 0.130 0.240

LISA+C 0.364 0.720 0.266 0.302 0.221 0.247 0.133 0.241
PCNM+C 0.391 0.752 0.281 0.298 0.224 0.243 0.130 0.249

SS-DTP

NoSpat - 0.712 0.260 0.289 0.214 0.249 0.127 0.235
LISA - 0.718 0.258 0.293 0.214 0.253 0.129 0.236

PCNM - 0.750 0.274 0.288 0.219 0.252 0.128 0.245
C 0.402 0.712 0.261 0.290 0.214 0.250 0.127 0.236

LISA+C 0.359 0.717 0.260 0.292 0.214 0.254 0.129 0.236
PCNM+C 0.382 0.750 0.274 0.289 0.219 0.252 0.128 0.245

MS
NoSpat 0.384 0.792 0.324 0.312 0.205 0.298 0.132 0.276
LISA 0.417 0.862 0.332 0.330 0.235 0.333 0.136 0.284

PCNM 0.394 0.826 0.350 0.319 0.214 0.302 0.134 0.282

R
e
g
re

ss
io
n

T
re

e
s

SS-DT

NoSpat 0.737 0.805 0.464 0.569 0.750 0.672 0.317 0.405
LISA 0.774 1.866 0.540 0.430 0.619 0.915 0.295 0.448

PCNM 0.820 0.885 0.428 0.412 0.432 0.688 0.302 0.374
C 0.462 1.386 0.414 0.456 0.447 0.444 0.341 0.445

LISA+C 0.437 1.429 0.527 0.472 0.469 0.684 0.351 0.390
PCNM+C 0.492 1.634 0.446 0.521 0.380 0.766 0.392 0.366

SS-DTP

NoSpat 0.624 1.361 0.500 0.631 0.480 0.377 0.336 0.475
LISA 0.504 1.273 0.608 0.464 0.901 0.833 0.274 0.413

PCNM 0.998 1.411 0.397 1.577 0.842 0.866 0.440 0.587
C 0.851 1.072 0.556 0.689 0.694 0.562 0.332 0.504

LISA+C 0.880 1.462 0.475 0.571 0.498 0.627 0.391 0.388
PCNM+C 0.794 0.854 0.520 0.779 0.575 0.455 0.295 0.587

MS
NoSpat 0.364 1.026 0.425 0.463 0.349 0.436 0.630 0.448
LISA 0.443 1.096 0.732 0.502 0.307 0.366 0.323 0.435

PCNM 0.460 0.984 0.454 0.390 0.303 0.467 0.337 0.348

R
a
n
d
o
m

F
o
re

st
s

SS-DT

NoSpat 0.300 0.893 0.336 0.307 0.197 0.572 0.132 0.251
LISA 0.296 0.915 0.345 0.302 0.215 0.570 0.127 0.251

PCNM 0.336 0.855 0.344 0.305 0.188 0.564 0.130 0.256
C 0.320 0.912 0.326 0.310 0.211 0.553 0.135 0.244

LISA+C 0.305 0.902 0.330 0.311 0.226 0.565 0.133 0.249
PCNM+C 0.332 0.889 0.315 0.304 0.200 0.555 0.133 0.244

SS-DTP

NoSpat 0.297 0.882 0.312 0.293 0.197 0.587 0.134 0.248
LISA 0.302 0.876 0.333 0.306 0.217 0.595 0.131 0.251

PCNM 0.331 0.869 0.324 0.297 0.196 0.573 0.133 0.248
C 0.320 0.883 0.316 0.296 0.193 0.588 0.135 0.246

LISA+C 0.303 0.904 0.327 0.294 0.208 0.592 0.128 0.247
PCNM+C 0.325 0.855 0.320 0.298 0.199 0.568 0.132 0.249

MS
NoSpat 0.262 0.578 0.254 0.277 0.195 0.219 0.148 0.234
LISA 0.263 0.520 0.291 0.286 0.200 0.226 0.147 0.229

PCNM 0.259 0.534 0.253 0.270 0.197 0.219 0.148 0.236
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Fig. 4. Results in terms of average RSE. For readability, the results of LR in the upper
part are graphically truncated to 1.0 (but they are actually around 1.5).

Fig. 5. RSE results averaged over the years for each month, obtained by the best
configurations (see Fig. 4) for each pair of setting (MS, SS-DT, SS-DTP) and regressor.

5 Conclusion

In this paper, we proposed different approaches to take into account temporal
and spatial autocorrelation phenomena while learning forecasting models for the
prediction of the energy consumption in smart grids. For the temporal dimen-
sion, we investigated the contribution of the explicit representation of temporal
information related to historical measurements, also through the temporal radial
closeness, and that of predicting the value for multiple future time-steps simulta-
neously. For the spatial dimension, we investigated the contribution coming from
the injection of LISA indexes and eigenvectors computed through the PCNM.

The experiments proved the overall superiority of models learned in the multi-
step predictive setting, and the positive contribution coming from the PCNM,
also when the available training data are scarce. The learned models also signif-
icantly outperformed the considered state-of-the-art competitor GMAN, which
is based on a multi-attention neural network architecture.

For future work, we will consider the adoption of the proposed strategies
for short-term predictions, in a nowcasting environment, and the integration of
transfer learning techniques [11] to further improve the predictive accuracy when
the available data related to a specific geographic area are poor.
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